Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks.

نویسندگان

  • Gordon L Shulman
  • Serguei V Astafiev
  • Danny Franke
  • Daniel L W Pope
  • Abraham Z Snyder
  • Mark P McAvoy
  • Maurizio Corbetta
چکیده

Shifts of attention to unattended stimuli (stimulus-driven reorienting) are often studied by measuring responses to unexpected stimuli, confounding reorienting and expectation. We separately measured the blood-oxygenation-level-dependent signal for both factors by manipulating the probability of salient visual cues that either shifted attention away from or maintained attention on a stream of visual stimuli. The results distinguished three networks recruited by reorienting. Right temporoparietal junction (TPJ), the posterior core of a ventral frontoparietal network, was activated more by cues for shifting than maintaining attention independently of cue location and probability, acting as a switch. TPJ was separately modulated by low probability cues, which signaled a breach of spatial expectation, independently of whether they shifted attention. Under resting conditions, TPJ activity was correlated [resting-state functional connectivity magnetic resonance imaging, (rs-fcMRI)] with right inferior frontal gyrus (IFG), an anterior component of the ventral network. Nevertheless, IFG was activated only by unexpected shifts of attention, dissociating its function from TPJ. Basal ganglia and frontal/insula regions also were activated only when reorienting was unexpected but showed strong rs-fcMRI among themselves, not with TPJ/IFG, defining a distinct network that may retrieve/activate commands for shifting attention. Within dorsal frontoparietal regions, shifting attention produced sustained spatially selective modulations in intraparietal sulcus (IPS) and frontal-eye field (FEF), and transient less selective modulations in precuneus and FEF. Modulations were observed even when reorienting was likely, but increased when reorienting was unexpected. The latter result may partly reflect interactions with lateral prefrontal components of the basal-ganglia/frontal/insula network that showed significant rs-fcMRI with the dorsal network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention.

Attention can be voluntarily directed to a location or automatically summoned to a location by a salient stimulus. We compared the effects of voluntary and stimulus-driven shifts of spatial attention on the blood oxygenation level-dependent signal in humans, using a method that separated preparatory activity related to the initial shift of attention from the subsequent activity caused by target...

متن کامل

Role of Basal Ganglia Circuits in Resisting Interference by Distracters: A swLORETA Study

BACKGROUND The selection of task-relevant information requires both the focalization of attention on the task and resistance to interference from irrelevant stimuli. Both mechanisms rely on a dorsal frontoparietal network, while focalization additionally involves a ventral frontoparietal network. The role of subcortical structures in attention is less clear, despite the fact that the striatum i...

متن کامل

Causal interactions in attention networks predict behavioral performance.

Lesion and functional brain imaging studies have suggested that there are two anatomically nonoverlapping attention networks. The dorsal frontoparietal network controls goal-oriented top-down deployment of attention; the ventral frontoparietal network mediates stimulus-driven bottom-up attentional reorienting. The interaction between the two networks and its functional significance has been con...

متن کامل

Effective connectivity during feature-based attentional capture: evidence against the attentional reorienting hypothesis of TPJ.

The most prevalent neurobiological theory of attentional control posits 2 distinct brain networks: The dorsal and ventral attention networks. The role of the dorsal attentional network in top-down attentional control is well established, but there is less evidence for the putative role of the ventral attentional network in initiating stimulus-driven reorienting. Here, we used functional magneti...

متن کامل

Theta Oscillation Reveals the Temporal Involvement of Different Attentional Networks in Contingent Reorienting

In the visual world, rapidly reorienting to relevant objects outside the focus of attention is vital for survival. This ability from the interaction between goal-directed and stimulus-driven attentional control is termed contingent reorienting. Neuroimaging studies have demonstrated activations of the ventral and dorsal attentional networks (DANs) which exhibit right hemisphere dominance, but t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 14  شماره 

صفحات  -

تاریخ انتشار 2009